First principles exploration of NiO and its ions NiO+ and NiO-.

نویسندگان

  • Constantine N Sakellaris
  • Aristides Mavridis
چکیده

We present a high level ab initio study of NiO and its ions, NiO(+) and NiO(-). Employing variational multireference configuration interaction (MRCI) and single reference coupled-cluster methods combined with basis sets of quintuple quality, 54, 20, and 10 bound states of NiO, NiO(+), and NiO(-) have been studied. For all these states, complete potential energy curves have been constructed at the MRCI level of theory; in addition, for the ground states of the three species core subvalence (3s(2)3p(6)∕(Ni)) and scalar relativistic effects have been taken into account. We report energetics, spectroscopic parameters, dipole moments, and spin-orbit coupling constants. The agreement with experiment is in the case of NiO good, but certain discrepancies that need further investigation have arisen in the case of the anion whose ground state remains computationally a tantalizing matter. The cation is experimentally almost entirely unexplored, therefore, the study of many states shall prove valuable to further investigators. The ground state symmetry, bond distances, and binding energies of NiO and NiO(+) are (existing experimental values in parenthesis), X(3)Σ(-)(X(3)Σ(-)), r(e) = 1.606 (1.62712) Å, D(0) = 88.5 (89.2 ± 0.7) kcal/mol, and X(4)Σ(-)(?), r(e) = 1.60(?) Å, D(0) = 55 (62.4 ± 2.4) kcal/mol, respectively. The ground state of NiO(-) is (4)Σ(-) (but (2)Π experimentally) with D(0) = 85-87 (89.2 ± 0.7) kcal/mol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies

The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...

متن کامل

Removal of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies

The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...

متن کامل

First-principles assessment of hole transport in pure and Li-doped NiO.

Alloying nickel oxide (NiO) with lithium oxide (Li2O) at high Li concentrations may reduce NiO's band gap and expand its use as a light absorber in photocatalytic and tandem dye-sensitized solar cell technologies. In this work, we evaluate the viability of this alloy as a p-type hole transport material. We use embedded cluster models, along with unrestricted Hartree-Fock and complete active spa...

متن کامل

Removal of Cd2+ from Aqueous Solution by Nickel Oxide/CNT Nanocomposites

The present work investigates the efficiency of the nickel oxide/carbon nanotube (NiO/CNT) nanocomposite for the removal of Cd2+ metal ions from an aqueous. The NiO/CNT nanocomposite was synthesized by the direct co-precipitation method in an aqueous media in the presence of CNTs. The resulting materials were characterized by FT-IR, XRD, SEM, N2 adsorption-desorption</em...

متن کامل

Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries

In this study, we synthesized a powder consisting of core-shell-structured Ni/NiO nanocluster-decorated graphene (Ni/NiO-graphene) by a simple process for use as an anodic material for lithium-ion batteries. First, a crumpled graphene powder consisting of uniformly distributed Ni nanoclusters was prepared by one-pot spray pyrolysis. This powder was subsequently transformed into the Ni/NiO-graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 138 5  شماره 

صفحات  -

تاریخ انتشار 2013